INTL: (253) 473.5000
RECOMMENDED CONTENT

[Case Application] Company Compresses its R&D Cycles with High-Temp Tooling Boards

[White Paper] Fast, Economical Tooling Options for Prototyping and Custom Builds

[Case Application] Hexcel Uses PU Tooling Board for Fast and Low-Cost Tooling Alternative

[Product Data Sheet] LAST-A-FOAM® FR-4800 High-Temperature, Low CTE Tooling Board

[Blog] Which Tooling Option is Best for Rapid Prototyping?

[On-Demand Webinar] High-Temp Epoxy Urethane Foam: Economical Alternative for Soft Tools and Molds

[Blog] Satisfying the Large and Small of Customer Tooling Needs

[Video] Large Tool Demo Using HEXTool® M61

[User Guide] Bonding, Machining, Finishing and Curig Guide for LAST-A-FOAM® Tooling Boards

[White Paper] Reduce Costs and Develop More Accurate Tooling

[Blog] Transforming PU Foam into Production Tooling
WHICH TOOLING OPTION IS BEST FOR RAPID PROTOTYPING?
For manufacturing industries such as aerospace, automotive, and marine, prototyping is a familiar part of the product development process, commonly used for R&D testing, product demonstrations, and regulatory certifications. During the prototyping phase, design engineers and program managers have the challenge of keeping costs low and turnaround times fast while still producing accurate models. These objectives are top-of-mind when selecting the best tooling method, whether you’re creating prototype parts, one-off components, or composite layup tools. The tooling option you choose affects the project budget, time-to-market, and product quality – so which method is best for your application?
In order to keep the prototyping process fast and economical, many people turn to wood structures, composites, clays, plasters, and even cheaper fiber glass materials for their tooling needs. However, these materials oftentimes cannot handle the curing process, dimensional accuracy, complexity, and other specifications. When this is the case, the natural inclination may be to jump straight to hard tooling options such as ceramics, aluminum, steel, and Invar steel alloy. These hard tooling materials are excellent for long-term production runs or applications with extremely tight tolerances, but their higher prices and lengthier lead times are not always conducive for rapid prototyping or low-volume applications.
One option for meeting these application requirements while keeping cost down and accommodating tight turn times is to use high-performance polyurethane foam tooling for proof-of-concepts, demo models, and one-off builds. Contrary to popular misconceptions, foam does not produce off-gassing, does not have cure inhibition issues, and is available with a 7-day lead time for sheet stock, in a variety of formulations, sizes and density. Recently, an aerospace manufacturer approached us about rapid prototyping for composite products used in aircraft interiors. They were investigating new methods of making mold tools for the prototypes, with specifications that included:
- Maximum of 12 pulls per tool
- Temperatures of 266°F (130°C)
- Maximum pressure of 87 psi (600 kPa)
After speaking to the client about their application, we quickly provided them with a recommendation on the most appropriate foam for the project, technical documentation with further details, a sample sheet of material to experiment with, and an estimated cost. For rapid prototyping applications like this where speed is of the essence, soft tooling has the unique capability of meeting your engineering challenges at a fraction of the cost of hard tooling.
Contact Us